On Demand Memory Specialization for Distributed Graph Databases
نویسندگان
چکیده
In this paper, we propose the DN-tree that is a data structure to build lossy summaries of the frequent data access patterns of the queries in a distributed graph data management system. These compact representations allow us an efficient communication of the data structure in distributed systems. We exploit this data structure with a new Dynamic Data Partitioning strategy (DYDAP) that assigns the portions of the graph according to historical data access patterns, and guarantees a small network communication and a computational load balance in distributed graph queries. This method is able to adapt dynamically to new workloads and evolve when the query distribution changes. Our experiments show that DYDAP yields a throughput up to an order of magnitude higher than previous methods based on cache specialization, in a variety of scenarios, and the average response time of the system is divided by two.
منابع مشابه
Parallel Formulations of Tree-Projection Based Sequence Mining Algorithms
Discovery of sequential patterns is becoming increasingly useful and essential in many scientific and commercial domains. Enormous sizes of available datasets and possibly large number of mined patterns demand efficient, scalable, and parallel algorithms. Even though a number of algorithms have been developed to efficiently parallelize frequent pattern discovery algorithms that are based on the...
متن کاملParallel Formulations of Tree-Projection-Based Sequence Mining Algorithm
Discovery of sequential patterns is becoming increasingly useful and essential in many scientific and commercial domains. Enormous sizes of available datasets and possibly large number of mined patterns demand efficient, scalable, and parallel algorithms. Even though a number of algorithms have been developed to efficiently parallelize frequent pattern discovery algorithms that are based on the...
متن کاملParallel tree-projection-based sequence mining algorithms
Discovery of sequential patterns is becoming increasingly useful and essential in many scientific and commercial domains. Enormous sizes of available datasets and possibly large number of mined patterns demand efficient, scalable, and parallel algorithms. Even though a number of algorithms have been developed to efficiently parallelize frequent pattern discovery algorithms that are based on the...
متن کاملDistributed Graph Storage And Querying System
Graph databases offer an efficient way to store and access inter-connected data. However, to query large graphs that no longer fit in memory, it becomes necessary to make multiple trips to the storage device to filter and gather data based on the query. But I/O accesses are expensive operations and immensely slow down query response time and prevent us from fully exploiting the graph specific b...
متن کاملCompiled Plans for In-Memory Path-Counting Queries
Dissatisfaction with relational databases for large-scale graph processing has motivated a new class of graph databases that offer fast graph processing but sacrifice the ability to express basic relational idioms. However, we hypothesize that the performance benefits amount to implementation details, not a fundamental limitation of the relational model. To evaluate this hypothesis, we are expl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1310.4802 شماره
صفحات -
تاریخ انتشار 2013